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Abstract

The debugging cycle is the most common methodology for finding and correcting errors in sequential
programs. Cyclic debugging is effective because sequential programs are usually deterministic. Debugging
parallel programs is considerably more difficult because successive executions of the same program often do
not produce the same results. In this paper we present a general solution for reproducing the execution
behavior of parallel programs, termed Instant Replay. During program execution we save the relative order

of significant events as they occur, not the data associated with such events. As a result, our approach
requires less time and space to save the information needed for program replay than other methods. Our
technique is not dependent on any particular form of interprocess communication. It provides for replay of
an entire program, rather than individual processes in isolation. No centralized bottlenecks are introduced

and there is no need for synchronized clocks or a globally-consistent logical time. We describe a prototype
implementation of Instant Replay on the BBN Butterfly Parallel Processor, and discuss how it can be

incorporated into the debugging cycle for parallel programs.

This work was supported by the National Science Foundation under grant number DCR-8320136 and
DARPA/ETL under grant number DACA76-85-C-0001.

r.. pub* -O , ..,- s-i,, ho
*N-t

1"ib -



SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) //~ / f

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

TR 194

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Debugging Parallel Programs with Technical Report
Instant Replay

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(#)

Thomas J. LeBlanc and John M. Mellor-Crummey DACA76-85-C-OO01

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS

Computer Science Department
The University of Rochester
Rncheqtr- Npw Ynrk 14f27

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA/1400 Wilson Blvd. September 1986

Arlington, VA 22209 13. NUMBER OF PAGES

23
14. MONITORING AGENCY NAME & ADDRESS(f different from Controlling Office) IS. SECURITY CLASS. (of this report)

Office of Naval Research Uncassifed
Information SYstems ISc. assifCN
Arlington, VA 22217 SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, it different from Report)

IS. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on revere* aide it neceasary nd idenlfy by block number)

Crew, Protocols, distributed debugging, execution replay, parallel
programming, program instrumentation, shared objects.

2CT (Continue onfe z ra aide I necesay and identify by block number)

the debugging cycle is the most common methodology for finding and correcting
errors in sequential programs. Cyclic debugging is effective because
sequential programs are usually deterministic. Debugging parallel programs
is considerably more difficult because successive executions of the same
program often do not produce the same results. In this paper we present
a general solution for reproducing the execution behavior of parallel
programs, termed Instant Replay. During program execution we save the
relative order of significant events as they occur, not the data associated

OD JAN73 1473 EDITION OF I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

a .~~W *' ~ **= -' - a~..=..la...J~a~..&=h



20. ABSTRACT (Continued)

with such events. As a result, our approach requires less time and space to
save the information needed for program replay than other methods. Our
technique is not dependent on any particular form of interprocess
communication. It provides for replay of an entire program, rather than
individual processes in isolation. No centralized bottlenecks are introduced
and there is no need for synchronized clocks or globally-consistent logical
time. We describe a prototype implementation of Instant Replay on the BBN
Butterfly Parallel Processor, and discuss how it can be incorporated into
the debugging cycle for parallel programs.

Accession For

NTIS GRA&I
DTIC TAB
Unarnounced 

• Justlication-

Dintribution/

Availability Codes
(Avail and/or

Dist , Special

9



1. Introduction

Debugging sequential programs is a well understod task that draws on tools and techniques

developed over many years. One early technique was to record snapshots of the entire program state, often

k consisting of many pages of hexadecimal digits, for penmul by the prgrammer. Debugging was a

programmer-intensive operation, since there were few tools for ana~lzinS the program state. Over time this

approach was replaced by interactive debuggers. which allow the programmer to examrune arbiLrar) deta;!,

of the program state during execution. Debugging became more computation-intensive, since the computer

was used to reproduce execution sequences with successively greater detail. As a result, the most common

*.. , methodology used today to debug sequential programs is cyclic: the program is executed until an error

manifests itself, the programmer postulates a set of underlying causes for the error, trace statements or

additional breakpoints are inserted to gather more reformation about the causes of the error, and the

program is reexecuted. This technique is effective because sequential programs are usually deterministic

That is, for a fixed input, each execution of a program will always follow the same execution path and

produce the same results.

* Debugging parallel programs is considerably more difficult because parallel programs are often not

deterministic.' In our model parallel programs consist of multiple asynchronous processes that communicate

% using some form of message-passing or shared memory. No assumption may be made about the relative

speed of processes: we can only assume finite progress by each process. Since parallel programs do not full.

specify all possible execution sequences, the execution behavior of a parallel program in response to a fixed

input may be indeterminate, with the results depending on a particular resolution of race condiuons

existing among processes. Therefore, cyclic debugging techniques for error isolation are not guaranteed to

work because successive executions of the same parallel program may not produce the same results, We

are left with two options for debugging parallel programs: we can either take snapshots of the program

state during execution for later examination or we can provide a mechanism that guarantees reproducible

behavior of parallel programs. Only the latter approach allows reliable use of cyclic debugging techniques.

The firt alternative, in which the programmer analyzes snapshots of program state taken during

execution, recognizes that multiple executions of parallel programs are indeterminate, therefore. all

information necessary to diagnose program errors must be collected during a single execution. Behavioral

Abstraction (BA) is typical of this approach 121. BA provides a mechanism for the hierarhical definition of

events in terms of sequences of primitive events that can occur during program execution, An event
V'., recognition tool monitors the stream of primitive events that occur during program execution and presents

A.: the user with an abstract view of the program's behavior in terms of a sequence of hierarchically-defined
events. There are two disadvantages to this technique. First. BA requires that a user exhaustively descibe

interesting events which take place dunng execution in terms of a bottom-up specification. In creating the

specification, the user must anticipate all interesting events related to an error before execution: there is no

mechanism for gathering additional information about an error after it is observed. Second, the amount of

I We are iterested in programs that exhibit rme Ianllelism or. at dhe Y lNt. 2PPCU to exhibit pMllelism due to preemptl~e

scheduling of processes A concurrent program implemented b) coroutina runn i on a single proemaor without the posnbilit% of
preernpuon an be debugged as if it were a sequental program
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information gathered tends to be voluminous. Since the technique is not cyclic, the user must collect

enough information during execution to diagnose any error that might arise. Other work based on one-shot
execution of parallel programs has the same limitation 11.9,211.

The sacoud alternthue for dbugging parallel programs is based on reproducible program execution.
which allows cb ddxab g techniques to be applied. Reproducible program behavior has been studied
in severat dmihm including concurrent programs using semaphores and monitors for communication.

system based on nested atomic transactions, and systems comprised of loosely-coupled processes that

communicate via messages.

Carver and Tai have considered repeatable execution for programs consisting of concurrent processes
that interact through semaphores and monitors 131. In their approach, execution of a concurrent program is
characterized by a sequence of P operations (termed a P-seqlence) on shared semaphores. The same idea
can be used to produce an M-sequence for monitors, which records a series of starts of monitor procedures.
A P-sequence is a sequence of ordered pairs: each pair corresponds to a P operation on a specific
semaphore by a specific process. Thus, a P-sequence is a total order of all synchronization operations that

occur in a program. P-sequences can be created by the progrnmer to test specific synchronization
sequences of a concurrent program or can be reproduced during execution to provide repeatable execution.
The disadvantage of this approach is that it requires that all P operations be serialized, thereby losing much

of the potential for parallelism that exists in a program. While adequate for single processor systems that

simulate concurrency, this technique would not be useful in a truly parallel environment. There. the
serialization constaint could have such an impact on program performance that it would be impractical to

monitor programs during normal execution. Use of this method would be then relegated io a distinct
testing and debugging phase.

Chiu's technique for replaying a program's execution in an atomic transaction system involves

checkpointing each version of all atomic objects and recording a timestamp for each atomic action dunng
program execution [51. A debugger uses this information to traverse action trees (corresponding to the
nested atomic actions of a program execution) according to a serialization of their constituent atomic
actions. Traversing an action tree permits viewing the state of atomic objects before and after each atomic

update, as well as replaying execution through action sequences to isolate program flaws. The major
drawback of this work is that the techniques are restricted to computations structured in terms of nested

ato. actions. In addition, these techniques require significant storage overhead to maintain the necessary
checkpoints of aomic objects, although the checkpoints may be required for recovery actions anyway.

Methotx t upwbice the execution behavior of programs comprised of loosely-coupled processes
that commmicate xsag inosaes typically require that the coammt of tmt message be recorded in an

.4.. event log as it is received [7,13,24. The programmer can either @view the events (messages) in the log. in

an attempt to ibolte error, or the events can be used as input Io replay the execution of a process in
isolation. A simlar event Ioging approach has also been used to monitmr program performance 116.
There are several disadvantages to this approach. F*mrt, it has only been used in loosely-coupled systems

and there me rasons to believe it would not be wei-suited to sightly-wupled systems. Although the

amount of data exchanged in messages could be very large, this technique exploits the fact that
) 4.
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communication in loosely-coupled systems takes place infrequently, primarily because of the high cost of

communication. The additional time necessary to copy a message into an event log in local memory does

not seriously affect performance when compared with the time required to send a message. This

assumption does not necessarily apply to tightly-coupled systems, where the cost of communication is

lower, allowing more frequent communication. Another disadvantage is that the space requirements for the

event log tend to be very large. Again. within the domain of loosely-coupled processes. it is reasonable to

anume the logs will grow slowly enough that they can be buffered in memory and then stored on external

devices without seriously affecting the performance of the program. The third, and most important

drawback, is that it is difficult to examine the global effects of process interactions using this technique,

since the replay mechanism only operates on a single process in isolation. Previous attempts to replay

groups of processes using this scheme require that a network-wide consistent time be maintained [7].

In this paper we present a general solution for reproducing the execution behavior of parallel

programs, termed Instant Replay. Our emphasis is on providing repeatable execution of highly parallel

programs in tightly-coupled systems, although our approach naturally extends to loosely-coupled systems.

During program execution we save the relative order of significant events as they occur, not the data

associated with such events. Since we do not require the contents of all process interactions (e.g., messages)

to be saved, our approach requires less time and space to save the information needed for program replay

than other methods. Our technique guarantees reproducible program behavior during the debugging cycle

by using the same input from the external environment and by imposing the same relative order on events

during replay that occurred during the original execution. Unlike previous techniques, Instant Replay is

not dependent on the particular form of interprocess communication used. In addition, we provide replay

for an entire program, rather than individual processes in isolation. Finally, we avoid introducing any

global synchronization of events through the use of a fully distributed protocol; there is no centralized

bottleneck and no need for synchronized clocks or a globally-consistent logical time. With these properues,

Instant Replay is especially useful for debugging parallel programs on tightly-coupled multiprocessors,

where interprocess communication is cheaper, and therefore more frequent, than in loosely-coupled

systems.

In the next section we present Instant Replay. including our goals, assumptions, and approach.

Section 3 describes a prototype implementation on the BBN Butterfly, a tightly-coupled multiprocessor

comprised of 128 MC68000 processors. In Section 4 we discuss how Instant Replay can be incorporated

into the debugging cycle for parallel programs. Section 5 summarizes the advantages of our approach and

describes our plans for future work.

2. Instant Replay

When debugging a sequential program, one can usually guarantee reproducible program execution by

supplying the same input each time the program is executed. Successive executions with the same input

produce the same behavior because sequential programs tend to be deterministic. The same is true of the
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individual processes in a parallel program.? If each process is supplied the same input values (corresponding

to the contents of messages received or the values of shared memory locations referenced) in the same order

during successive executions, it will produce the same behavior each time. In particular, each process will
produce the same output values in the same order. Each of those output values may then serve as an input

value for some other process. Therefore, in order to debug a parallel program, we do not need to store all

input values for each process in an event log, since any input value corresponding to some output value can

be recomputed during replay. By ensuring that each process sees the same input values at every step of

execution, all processes will exhibit the same execution behavior during both the monitoring phase and

replay. Instant Replay is based on this observation.

In our approach, all interactions between processes are modeled as operations on shared objects. A

series of modifications to a shared object is represented as a totally ordered sequence of versions. Each

version has a corresponding version number, which is unique with respect to a particular object. During

normal program execution (i.e, the monitoring phase) we record a partial order of the accesses to each

object. (It is a partial order because we do not need to impose an ordering on the processes that read a

particular version of a shared object.) This partial order is specified by a sequence of version numbers for

each object. To record the partial order the system maintains the current version number for each object

, and the number of readers for each version of each object. In addition, each process records the version

number of each shared object it accesses. During program replay, we allow each process to recompute its
output values, thereby providing input values for other processes. We use the record of object accesses

recorded by each process to ensure that the same version of input values used by the process during the

monitoring phase is used during replay. As long as the recorded information is available, the original

program execution can be repeated over and over.

Our goal is to provide a flexible monitoring system, applicable in both loosely-coupled and tightly-

coupled environments, that allows a programmer to replay arbitrary execution sequences produced by a

parallel program. Since we cannot predict when it may be desirable to replay a particular execution

sequence, it must be practical for the monitoring mechanisms to be in place during ever) execution.

Therefore, our mechanisms must have minimal impact on program performance. Instant Replay provides

reproducible behavior of parallel programs with minimal impact on performance by (a) simulating the

original external environment during replay, (b) modeling all interprocess events as operations on shared

data, submuming both shared memory and message-passing primitives, (c) recording only the version

number of data values that are input to each process, not the values themselves, thereby minimizing the

5 .amount of information recorded, and (d) using a distributed data collection mechanism, so that no central

bottleneck is present when a program is being monitored or replayed. We will explore each of these
apects in the following sections

5-.

2 For now. we m e thaz proma do not catwzin noadwemtnisnic WAsements In paud r. procmm do not allow asynchro-
ma itemnpts
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2.1. Simulating the External Environment

As with any cyclic debugging system, we assume that the original execution of a program and

subsequent replays occur in equivalent virtual machine environments. Two virtual machines A and B are

said to be equivalent with respect to program P if program P can exhibit the same behavior whether

executed on virtual machine A or B. For practical reasons, we do not require equivalent physical machine

satCs since that %oul in.-Z: tnc contents of all external devices, the exact value of the clock, and the

internal states of all components. In particular, A and B need not have identical real-time clock values if

P's execution does not depend on the real-time clock. Similarly, the contents of file F on machine A and B

can differ if P does not attempt to reference F. If program P depends on physical details of its virtual

machine during execution, it becomes difficult, if not impossible, to simulate the virtual machine during

replay.

Real-time programs, in particular. may not be good candidates for Instant Replay because it is so

difficult to simulate equivalent virtual machines.3 We require that programs receive identical input from the

-- environment during both execution and replay. However, it is not sufficient simply to supply the same

input to the process, we must also supply it at the same points during program execution. This can be yen

difficult for real-time programs since the) often receive input as a result of asynchronous interrupts.

Without making special provisions to record when interrupts occur during program execution, which could

severely degrade performance. we cannot accurately simulate the original virtual machine environment.

It is important to note that the problem of finding equivalent virtual machines also arises when

debugging sequential programs; it is orthogonal to the specific problem of debugging parallel programs.

We do not depend on a particular simulation of virtual machines, so any techniques developed for

sequential program debugging can probably be used. Specifically, we assume that programs do not exploit

the physical characteristics of any resources allocated by the system, therefore, we need only ensure that the

amount of resources available during replay is at least the amount used by the program during the original

execution. Any unsuccessful attempt to allocate resources during execution can be recorded, so that the

same behavior can be recreated during replay.

2.2. Communication Through Shared Objects

If processes in a parallel program do not communicate, each process can be debugged using

traditional techniques, since other processes in the program would have no effect on the execution path of a
particular process. It is only when processes interact, via communication and synchronization primitives,

that the potential for nonrepeatable behavior arises. Examples of process interactions include P and V

primitives applied to a shared semaphore [8], monitor entry procedures 1I0], send/receive message

primitives, and general sharing of memory. Instant Replay models all process interactions in a parallel

.-. program as operations on shared data. This characterization of process interactions is not restrictive since all

communication and synchronization primitives can be reduced to operations on shared data. In particular,

message-passing can be modeled as communication through a shared port, mailbox, or memory segment.

3To our knowledge, m significant software debugging system exists for real-time programs

,¢. 4,

o".
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Our approach exploits the fact that values exchanged between processes via shared data depend onlh
on the initial values in shared objects, the order in which processes are granted access to shared objects, and

the deterministic nature of processes. Operations on shared data objects can be separated into two classes:

read operations, which do not change the state of an object, and write operations, which do. By recording
the sequence of write operations on each shared object, it is possible to recreate the proper sequence of
state transitions for all shared objects during program replay. Similarly, by recording the version number

of each shared object read by a process, it is possible to recreate the proper input values for that process
during replay. This is exactly the information we record during the monitoring phase.

Instant Replay requires that the set of operations on each shared object have a valid serialization. A

set of operations has a valid serialization if the result of each individual operation is the same as it would

be if the operations had all been executed in some sequential order. A protocol that ensures a valid
*.-'. serialization, such as a concurrent-read-exclusive-write (CREW) protocol [6], must be used for access to

. .-. each shared object. In choosing a protocol, we look for one that guarantees serializability, while exerting
minimal impact on shared object access and allowing maximal parallelism. If an access protocol that
guarantees serializability for operations on shared objects is already present in the application or the system.
it is not necessary to superimpose another. Therefore, our techniques are applicable to programs that

incorporate results of current research efforts on how to structure interprocess communication to admit the
most parallelism. For example, Lamport [12], Peterson 1201, and Vitanyi & Awerbuch 125] present

algorithmic solutions for the concurrent-reading-while-writing (CRWW) problem that permit concurrenc%
among readers and writers, as well as among writers themselves. Instrumentation for Instant Replay can be

added to systems that use such protocols, if a serialization order of operations on each shared object can be

determined.'

For the remainder of this paper, we will illustrate our technique using a CREW protocol for access to
shared objects. A CREW protocol ensures a total order of writers with respect to each shared object, a

total order of readers with respect to writers of each shared object, and a partial order of readers with
respect to each shared object. Although we could use a protocol that requires mutually-exclusive (ME)

access to shared objects, resulting in a total order on accesses to each object. many parallel programs allow
concurrent readers; an exclusive access protocol would artificially limit the parallelism in such programs.

Since the execution path of a program can be characterized by a partial order on the operations with
respect to each shared object, our approach is to record a partial order of the accesses to each shared object

, during the monitoring phase and enforce that partial order during replay.

In addition to being independent of a particular protocol. Instant Replay does not rely on a particular

granularity of interprocess communication. The granularity of access to shared objects is implementation-

dependent. Message-passing systems only require the protocol during shared buffer access; shared-memory
systems may require the protocol to be used whenever shared storage is referenced.

4 For a serialization of operaons on ahared object to be posible the object must be egula [121 An object is regular when
all reads not cacurrent with a write get correct values, and any read which overlaps a series of writes obtains either the value of the
object before the firt of the writes, or one of the values being written

-,

NM %
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2.3. Data Structures for Program Monitoring

During the monitoring phase. we use a set of 1-way infinite tapes, called history lapes. to record the

information necessary for program replay. There are two types of history tape: process histon tapes are

used to record the version number of each shared object accessed by a process and object histor) tapes are

used to record the number of readers that have accessed each version of a shared object- (Object historn

tapes are used to record read operations that are effectively concurrent; they are unnecessary if a murk_
exclusion protocol is used.) A process history tape is modified only by the corresponding process: an objeci

history tape is modified by each process that accesses the objecL Since the relevant information is recorded

'-. as part of the access to an object, the monitoring phase imitates whatever parallelism is exhibited by the

application.

Each history tape has a header containing several fields: a pointer to the current square on the tape. a

pointer to the last non-blank square on the tape, and a pointer to the initial square on the tape The

operations that can be applied to a history tape are:

RewindHistoryTape -- set the current square pointer to the initial square
AdvanceHistoryTape -- advance the current square pointer to the next square
ReadHistoryTape - read the value written in the current square
WrnteHistoryTape -- write a value in the current square
IncHisoryTape -- increment the value stored in the current square

Upon creation, each shared object is assigned a version number of 0 and a history tape that is initiall.

blank. Likewise, upon creation, each process is assigned a history tape that is initially blank. Dunng each

read or write operation on a shared object by a process, infbrmation about the object is recorded on the

process's history tape and information about the operation is recorded on the object histon tape All

history tapes created during the execution of a parallel program are linked together to form a tree. Each

time a process spawns a child, a pointer to the history tape of the child process is recorded on the histor.

*tape of the parent. Similarly. each time a process creates a shared object, a pointer to the history tape of

the shared object is recorded on the history tape of the parent. Thus, during program execution, a tree of
history tapes is built which models the creation of objects during execution. This organization of history

tapes enables each process (object) history tape to be associated with the correct process (object) dunng

execution replay.

In addition to the information recorded on a process's history tape regarding interactions with shared

objects and child processes, arbitrary details of a process's execution can be recorded on the tape for use

during replay. Specifically, the resolution of certain interesting events can be recorded on the history tape

in order to replay programs containing nondeterminism. The information recorded about such events can

be used to recreate the same event during program replay. A mechanism to support the recording of these

events would need to be added to the implementation of the programming language at the appropriate
level (i.e., compiler code generation or language run-time support). Such a mechanism would be

appropriate to record the statement alternative chosen in a nondeterministic selection statemenL whether or

not a timeout interval had expired during execution, and clock values returned by system calls.

".4
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2.4. Access Protocols for Shared Objects
In order to properly record a partial order of the accesses to each shared object, a protocol that

ensures a vald senahzauon is needed. In this section we will describe such a protocol, a concurrent-read-
exclusive-wnte (CREW) protocol that can be used to implement Insant Replay.

The CREW access protocol for shared objects consists of four procedures: entry and exit procedures
for readers, and entry and exit procedures for writers. During the monitoring phase, these procedures
enforce a CREW access protocol on shared objects and record a partial order of accesses to each shared
object During the replay phase, these same procedures are used to enforce the partial order recorded
dunng the monitoring phase.

Each process that reads a shared object must use the entry procedure ReaderEntry (Figure 1). This
routine uses a semaphore associated with the object to ensure that the process is momentarily given
exclusive access to the object- The reader process increments the count maintained in the current square of
the object history tape. This indicates that one more process has read this version of the object. The
reader also records the version number of the object on its process history tape. At the end of the entrx
procedure the semaphore is released, allowing other readers to access the object concurrently. The reader
process ma. then perform one or more read operations on the shared object. Eventually, the exit routine
ReaderExit (also in Figure 1) is called, which simply decrements the number of readers for the object.

ReaderEntry (objectprocess):
if mode = replay then

key = ReadHistoryTape(process);
while not(objectversion = key) do delay-

end if:
Pobject.lock);
AtomicAdd(objectactiveReaders, 1);
if mode = replay then

object-readercount + = 1,
V(object.lock):

else
IncHistoryTape(object)
local Version : = objectversion;
V(object.lock);
WriteHistoryTape(processlocal Version);

end if-
AdvanceHistoryTape(process):

end ReaderEntry;

ReaderExit (object);
AtomicAdd(objectactiveReaders, -1);

end ReaderExit;

Figure 1

J**.4
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thereby allowing writers a chance to proceed 5

In replay mode, ReaderEntry functions a little differently. Before acquiring the semaphore, a reader

must wait until the version number for the target object is equal to the version number recorded on the
reader's history tape. This ensures that the reader will see the correct version of the target object during
replay. A separate counter, used only during replay, is updated to reflect the number of readers thus far

for the current version of the object. This counter allows writers to write the next version of an object on].
when all readers have finished with the current version. The rest of the entry procedure proceeds as

before, except that history tapes are not written, they are merely read and advanced as execution proceeds.

The same exit procedure is used by readers during the monitoring phase and replay.

Each process that modifies a shared object must use the entry procedure WriterEntry (Figure 2). In

this routine, the writer uses a semaphore associated with the object to gain exclusive access to the object.
Once the semaphore is acquired, the writer process waits for all active readers to finish. No new readers
can access the object since the entry routine for a reader must also acquire the semaphore. When all

readers have finished with the object, the writer is free to access the current version of the object. The
writer advances the object's history tape and an initial value of 0 is written onto the object's history tape,

WriterEntry (object, process):
if mode = replay then

key = ReadHistoryTape(process);
while not(object.version = key) do delay:
key : = ReadHistoryTape(object);
while not(object.readercount = key) do delay;

end if:
P(object.lock):
while not(objecLactiveReaders = 0) do delay;
AdvanceHistoryTape(object);

if mode = replay then
object.readercount := 0,

else
WriteHistoryTape(object,O);
WriteHistoryTape(process, objecLversion);

end if:
object.version + = 1;
AdvanceHistoryTape(process);

end WriterEntry;

WriterExit (object);
V(object.lock);

end WriterExit;

Figure 2

We use atomic increment and decrement operations to maintain the count of readers for an object, thereby avoiding the need
for additional synchronization in the exit procedure

-"~ ~~~ ~ % .... " "" .. . .,. . s : .. -,''" ; "';"-,.' ', ,,.,
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representing the fact that no processes have read the upcoming version. Next, the writer copies the object's
current version number onto its process history tape as a record of the version that preceded the
modification. The writer completes the entry procedure by incrementing the object's version number. The
writer may then modify the shared object. Exclusive axess is maintained because the semaphore is not
released until the exit procedure is called. The WriterExit routine (also in Figure 2) simply releases
exclusive access to the object by performing a V operation on the object's semaphore.

In replay mode, the enty routine for writers also functions somewhat differently. Before acquiring
the object's semaphore, the writer must wait until the current version of the object matches the version
number recorded on the writer's history tape. This ensures that the writer modifies the correct version.
Next, the writer must make sure that the number of readers that have seen the current version of the object
during replay is equal to the number of readers that saw that version in the original execution. This
ensures that a version is not changed until all readers have seen it. The count of readers of the upcoming
version is initialized to 0 and the version number is incremented. The write operation can now proceed.

The WriterExit procedure is the same for both monitoring and replay; the semaphore is released. thereby
terminating exclusive access to the object.

This description of a CREW access protocol is intended to be illustrative, not definitive. Instant
Replay requires neither a CREW protocol nor this particular implementation of a CREW protocol. As

stated previously, we could use an ME protocol to guarantee a valid serialization. In addition, a different
implementation, one that does not use shared memory, would probably be required for a loosely-coupled
system. For example. rather than accessing shared memory locations to read and record object status

information, some parts of the protocol could be implemented as remote operations. Regardless of the
characteristics of a particular implementation of the access protocols, our basic approach is to record a
partial order of operations on each shared object and ensure the same order during program replay

3. A Multiprocessor Prototype of Instant Replay

A prototype implementation of Instant Replay has been developed for the BBN Butterfl Parallel
Processor. Several considerations motivated the choice of the Butterfly as a testbed. First, we have a
Butterfly at the University of Rochester, but lack methods and tools for debugging parallel programs. This,

- combined with the current surge of software development for the Butterfly, created an urgent need we
wanted to fulfill. Second, interprocess communication on the Butterfly is inexpensive, which tends to
encourage development of communication-intensive programs. Third, communication on the Butterfly is
available over a wide range of granularities, process interactions can occur through direct sharing of
memory,. or through the use of higher-level primitives for meuage-pasig. Finaly. the high degree of

parallelism offered by the Butterfly provides a challenging test since hily parallel, communication-
intensive applications necessarily will experience the greatest performance degradation using any program
monitoring technique.

p'a

a - -- ' '',
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3.1. The BBN Butterfly Parallel Processor

The BBN Butterfly Parallel Processor at the University of Rochester consists of 128 processing nodes

connected by a switching network. Each switch node in the switching network is a 4-input, 4-output

crossbar switch with a bandwidth of 32 megabits/sec. Each processor is an 8 MHz MC68000 with 24 bit

virtual addresses. A 2901-based bit-slice co-processor interprets every memory reference issued by the

68000 and is used to communicate with other nodes across the switching network. All the memory in the

system resides on individual nodes, but any processor can address any memory through the switch. A

remote memory reference (read) takes about 4 us., roughly 5 times as long as a local reference.

Chrysalis [19], the Butterfly operating system, consists largely of a protected subroutine library that

implements operations on a set of primitive data types, including event blocks (structures used by processes

to post a word of data to the event owner), dual queues (queues that hold a sequence of long word data

enqueued by processes, or alternatively, a sequence of process handles corresponding to processes waiting

to dequeue data as it becomes available), shared memory segments, and a global name table. Objects of

these types can be shared among all processes executing on the machine. Low-level operations on these

data types are provided by Chrysalis, many of which are implemented by microcode. These primitive

operations provide a general framework upon which efficient high-level communication protocols and

software systems can be built.

*. 3.2. Monitoring Chrysalis Operations

Our prototype implementation provides programmers with encapsulated versions of the Chrysalis

primitive operations on events, dual queues, shared memory objects, and processes. The encapsulated
versions of the Chrysalis primitives enforce CREW access synchronization and record a partial order on the

operations as detailed in the previous section. This implementation was done at the level of primitive

Chrysalis operations to make repla% available to all programs; it can be used in any software system

developed on top of the Chrysalis operating system. In particular, recent system development efforts at the

University of Rochester that can be easily modified to incorporate Instant Replay include LYNX, a

programming language and run-time system for distributed computing [22,23], and SMP, a message-passing

system that supports multicast message communication among groups of processes [15].

While encapsulating the Chrysalis primitives for events and dual queues, it became apparent that

requiring a CREW protocol for all operations was inappropriate. Most of the operations on events and

dual queues are atomic, which means that the operations must occur serially with respect to their target

data object (a characteristic of the hardware). The CREW protocol allows concurrent readers of shared

objects, but introduces additional cost. Since event and dual queue operations cannot exploit concurrent

execution of readers, the expense of the CREW protocol is not justified. By replacing the CREW protocol

with the simpler mutual exclusion (ME) protocol, we force the serial execution of the Chrysalis event and

dual queue primitive operations, but reduce execution overhead by simplifying the entry and exit protocols.

An ME protocol also eliminates the need for object history tapes for events and dual queues since we can

record a total order using only process history tapes.

;, k1
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Using encapsulated versions of Chrysalis primitives in program code requires no additional effort
beyond that necessary to use the original primitives. Additional program code is only necessary for

regulating access to shared memory objects. Chrysalis provides primitives for sharing segments of memory.
General sharing of memory objects as provided by the Butterfly hardware and Chrysalis primitive

operations imposes no resrictions on memory access other than serializing word operations on each node.

since the memory hardware has only a single port. To guarantee that operations on such shared segments

conform to a CREW access protocol, it is necessary to use access entry and exit routines to control sharing
of these segments. The programmer can control the granularity of operations bracketed by the access

routines in response to performance concerns. By controlling the cost of the operations within an entry and
exit routine pair, the programmer can balance the reduction of parallelism incurred when locking for long

periods of time with the overhead of frequently executing the locking primitives. (Since the access protocol

entry and exit routines have a small critical section requiring mutual exclusion, there is a serial nature to

their execution.)

3.3. Case Studies

Two applications were chosen for experiments in program monitoring and replay: computation of a
knight's tour of a chessboard and Gaussian elimination. The knight's tour problem was chosen because
there is a existing implementation on the Butterfly that exhibits extremely nondeterministic behavior. A

parallel implementation of Gaussian elimination was chosen for study since, unlike the knight's tour

problem, no matter what execution path occurs when the program is run, the overall amount of

computon performed by the program is constant. Also, our implementation of Gaussian elimination has
already been the subject of a thorough perfbrmance study [14] and the statistics previously obtained about

the program's execution behavior can be used as a baseline for comparison to determine the cost of our

monitoring techniques.

3.31. Kukht's Tour

A knight's tour is a path on a chessboard for a knight that successively visits each square once and

only once using legal chess moves. Our program to compute a knight's tour of a chessboard consists of a
mster process and a user-specified number of slave processes. The master selects an initial position of the
knight on the chessboard and enters the corresponding board description in a global task queue. Next, the

master creates a set of slave processes that cooperate to search for a knight's tour beginning with the initial

board position. Each slave removes a set of board descriptions from the global task queue and replaces it

with a new set of board descriptions that could be generated by adding a legal move of the knight from its
prevus position. The order that these board descriptions are added and deleted from the task queue
detennines the breath and depth of the search performed. Since the order in which slave processes are
granted access to the task queue depends on the relative progress of the processes and resolution of

memory contention for the task queue, successive executions of the program tend to produce different

tomf

Cab to monitored versions of the task queue primitive operations (the task queue is a dual queue)

were iozed in the program in place of the original calls to Chrysalis primitives. These modifications did
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not require substantial effort and caused no significant growth in code size. The effect on the performance

of each individual primitive is substantial, since the original primitives are implemented in microcode and

there is no such support for the history tape maintenance operations. However, the effect on overall

program performance is dificult to measure due to the inherent nondeterministic nature of the knight's

tour computation. We cannot obtain identical executions of the monitored and unmonitored versions of
the program to compare execution times because such times vary wildly between successive invocations of

the program. We were able to measure accurately the comparative execution times for a knight's tour

program during the monitoring phase and the replay phase of the same execution. The difference between

the two execution times was less than 5%.

Using 16 processors. three successive executions required 18, 38, and 52 seconds to find three

different solutions for a 5x5 chessboard; the executions used 12K, 36K, and 60K bytes, respectively, for

history tapes.6 Using 64 processors, a solution was found in 43 seconds and required 48K bytes for history

tapes. It is not surprising that the amount of space required for the history tapes of the knight's tour

program varies with the amount of time taken to find a solution. Communication is roughly a constant

percentage of the computation and no matter how many processors are working on the task,

communication speed, hence history tape space requirements, is limited by the need to serialize access to a

single shared task queue. We estimate that the knight's tour program generates between 250 and 300

communication events per second: each communication event requires four bytes to record. From this we

can estimate the space requirements for the history tape as a function of the time needed to find a

particular solution.

3.3.2. Gaussian Elimination

To obtain an empirical comparison of the relative cost of monitored and unmonitored program

executions, an existing program to solve a system of linear equations using Gaussian elimination was

instrumented. In Gaussian elimination, the total amount of work performed by the program is

independent of the precise ordering of interprocess events during execution; the computation for each pivot

row depends on a fixed number of other rows.

The implementation of Gaussian elimination uses a broadcast message-passing system as the basis for

communication among the cooperating processes in the program' A single master process initializes shared

data structures and then spawns worker processes to diagonalize the matrix. The master delegates rows of

the matrix to each slave process participating in the solution. Each time the processing of a row is

completed, the contents are broadcast by the process holding that row to each of the other slaves.

To instrument this application we replaced some dual queue and event primitives used for

synchronization between the master and slaves with monitored versions of the Chrysalis primitives. The

'Our current implementation uses a 32 bit word for each entry on a history tape. althoulh 16 bit words would suffice for our
case studies, as well as mot other programs. Therefore, our space requirements are conservative and could easily be reduced by a fac-
tor of 2.

7The meisase-passing system used here is an early prototype of SMP [1S1 The results described in this section are partcularl
relevant to programs based on SMP, or similar communicauon models.
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underlying message-passing system, however, required more extensive changes. Message-passing *as
implemented using shared memory segments as communication buffers. Modifications to the send and
receive primitives of the message-passing system were required to enforce the CREW access protocols, as
detailed in section 2, for the shared communication buffers.

Although the code overhead and programming effort to make this tranformation were more
substantial than that required for the knight's tour, the size of the effort was still small. The original
Gaussian elimination program contains 1059 lines of code. To instrument the program for Instant Repla..
24 lines of code were altered and 17 lines of code were added. Most of the changes to the source code files
occurred in the message-passing module. Figure 3 shows the skeletal form of the monitored message-

passng routines.

The performance of the Gaussian elimination implementation was degraded by the enforcement of a

CREW protocol on shared object access and recording the acoess order to shared objects. Figure 4 depicts
the performance of monitored and unmonitored versions of the application on a 400x400 matnx. The

unmonitored program improves dramatically in performance as additional processors become involved in
the computation. however, there is no significant improvement in performance when more than 32
processors are in use. In fact, performance begins to degrade slightly beyond 32 processors because the
additional communication involved is not justified by the pin in paralelism 1141. A naive placement of
unoptimized monitoring operations in this program resulted in severe degradation of performance when
more than 8 processors were in use, as shown in Figure 4. This demonstrates the importance of efficient
monitoring operations. Optimizing the monitoring code greatly improved the performance, but sufl
managed to double the execution time of the program on 32 processors. Examination of the monitonng

cost showed that the program was spending a great deal of time monitoring and recording noncritical
polling operations on buffers. To lower the cost of monitoring, we devised a special entry procedure for

Send Message
Find buffer

V.. WriterEntry(buffer, myprocess)
Copy message into buffer
Set number of recipients

* WriterExit(buffer)

Receive Message
ReaderEntryPollbuffers. myprocess)

-' Poll incoming message buffers
Copy message into user area
ReaderExitPoll(buffers)
WriterEntry(buffer. myprocess)
Decrement number of recipients
WriterExit(buffer)

Figure 3
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use with the common programming idiom in which readers poll before reading a value.

Our implementation of message-passing uses polling to find incoming messages. Whenever a process

attempts to receive a message. a large number of buffers, one for each process in the computaUon, are
polled. Our naive placement of monitoring operations considered each pollin operation as an access to a

shared object, which was duly recorded on the process's history tape. The realization that none of the
polling operations. except the last one, are necessary for replay led us to devise a special entry procedure

used in conjunction with polling. With this new entry procedure, the access ordering to a buffer is
recorded only when a message is found. An indication of which buffer supplied the message and the
version number for that buffer are recorded on the process's history tape. During replay, only the buffer
from which a process received a message during the monitoring phase is polled. Use of this enr
procedure eliminated recording of nonesential ordering information during the monitoring phase, saving
both time and storage space for the information collected. The perfonmance of the program using the
special entry procedure is also shown in Figure 4. The result: we were able to monitor a communication-
intensive application for replay by imposing overhead of less than 10%.

As we have already stated, Gaussian elimination is a communication-intensive program, which tends
to produce large history tapes. Dtagonalization of an 800x&00 matrix on 64 processors requires 400KB for
the history tapes. While this is not a small amount of space, it is worth comparing the space requirements
for our method with other techniques that save the contents of every mesae received by a process in an

event log. Such an approach requires over 150MB of space in general, Intant Replay will always take
less Vace than an event log whenever large messages are involved, since we only require between 4 and 9

bytes for each message.'

4. instant Replay in the Debugging Cycle

Program replay makes it possible to repeat the execution of a parallel program as often as desired.
Unfortunately. Instant Replay does not automaticaily debug programs. parallel or otherwise. HoA then do
we use the replay capability to debug parallel programs? In this section we describe several techniques for

error isolation that can be used together with our approach. We have already used some of these
techniques in our own work; others require the cooperation of additional tools that we have not yet

developed.

Our goal is to provide repeatable execution, so that it is possible to observe the same execution of a
parallel program over and over. Any results that may have been ignored during previous observations can
always be reproduced on demand for clser examintation. This capability is especially useful for parallel
piograssince (a) multiple process tend to generate a lot of output, making it easy to miss important
results and (b) the proramming environments for parallel architectures are not as mature as the

progranming environments for sequential machines, and often lack tools for collecting and analyzing

I No" ily. fOur byu per mV ae neoda howeva. 1i pdlh Mtry procdure used by Geuussw elurunaw requires 8
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output data Howeer, the most important reason for reproducible behavior is that it makes cyclic

debugging possible.

The simplest form of cyclic debugging is to add output statements to an erroneous program that

provide addiional details about the execution of the program. Successive executions can be used to

provide successively greater detail about those parts of the program under suspicion. This technique does

not work with parallel programs in general because the output statements can change the relative timing of

operations within the program and yield a different execution sequence. With Instant Replay, however.

any number of output statements can be added to the program without changing the execution sequence

provided by the replay mechanism. In fact, any type of statement may be added to the program during

replay, as long as the additions do not affect the sequence of interactions with shared objects by each

process. Thus, the programmer can debug parallel programs by adopting the same cyclic methodology for

error isolation used in debugging sequential programs. We have found that this capability alone is a

valuable tool for debugging parallel programs, particularly in the absence of other debugging tools.

Repeatable execution also makes top-down debugging possible. Hierarchical abstraction of detail is

necessary to cope with the complexity of large software systems. Abstraction is particularly important in
understanding the behavior of parallel programs. The programmer should not have to be concerned with

the low-level details of execution of a parallel program, such as the interleaving of primitive operations.

Instead, we are interested in the salient features of the execution that characterize its behavior. Our

approach allows the programmer to start with a high-level view of a program's behavior, produced by
normal output statements or an event mechanism similar to Behavioral Abstraction. By carefully refining

that viewpoint, based on the information made available during successive replay, the programmer can

study erroneous behavior at any level of detail desired. As a result, one can diagnose program errors in a

top-down fashion without wading through voluminous, irrelevant detail at each step.

Another common technique used to debug sequential programs is breakpoint insertion. Breakpoints

are added to the program at interesting points in the code. Execution is suspended at each breakpoint.

allowing the programmer to examine the system state. Breakpoints only suspend a single thread of

execution, however, which is not sufficient for parallel programs consisting of multiple threads of execution

Inserting a breakpoint in one process of a parallel program will have an effect on every process that

communicates, directly or indirectly, with the suspended process. In particular, breakpoints can change the

relative order of events during execution, producing a different execution sequence each time. Fortunately,

we can provide reproducible execution even in the presence of breakpoints. No matter how man.

breakpoints are encountered during replay, we continue to order operations based on the contents of

history tapes. A process that is suspended by a breakpoint will eventually cause all other processes to wait

for some shared object to be read or written (assuming a connected graph of process interactions). When

the suspended process is allowed to continue beyond the breakpoint, it will eventually catch up to the other

processes and the entire program will continue executing. Thus, it is possible to cycle through breakpoints

in man) different processes during program replay, examining system state for a different process at each

breakpoint.

Ae
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This use of breakpoints also allows the programmer to examine the global state of the computation,
Due to communication delays and a reliance on local viewpoints, it is impossible to take an instantaneous
snapshot of global state. However, all we really need to see are meaningful global states (4], consistent
states based on the happened before ordering of Lamport [11]. For example, if we suspend a process P at
breakpoint X, all events that occurred before P reached X should be reflected eventually in all other
processes. In addition, other processes should not be allowed to proceed beyond any point that requires
process P to proceed beyond X. This view of a computation is the best we can hope for since, if all

processes are stopped as the result of setting a single breakpoint, the happened before relation cannot
distinguish between the global state represented by all suspended processes and an omniscient snapshot of
the global state during normal execution. We provide exactly this notion of global state, and any nouon
that attempts to be more precise is not likely to be meaningful in a distributed system.

We can use breakpoints, in conjunction with Instant Replay, to provide the ability to halt distributed
programs in a consistent state, as in (181, without the need fur additional mechanisms. By setting a local
breakpoint during replay we are, in effect, setting a breakpoint in the global state. When the local
breakpoint is reached, we can see the exact state of the local process containing the breakpoint, and the
exact state of all other processes as they block due to enforcement of the happened before relation.
Differences between the state of each process in an instantaneous snapshot and what we see at a breakpoint
reflect the natural degree of asynchrony between processes in the program.

A consequence of our breakpoint capability is the ability to support single-step execution of
processes. Single-step execution can be used during debugging to ace the state transitions of an
individual process or the effects of interprocess communication on the internal states of communication
partners. We can replay a process using single-step execution becadse enforcement of the happened before
relation ensures that asynchrony between processes remains within allowable bounds.

Instant Replay can also be used in conjunction with an event log technique to allow repeatable
execution of a subset of processes involved in a computation. As we have described it, our approach
requires that the input to each process be recomputed during replay, rather than retrieved from an event
log. This is both an advantage and a disadvantage. While our technique requires less time and space
during the monitoring phase, it also requires that all processes be reexecuted during replay. Global replay
is a disadvantage if the computational requirements to replay a program are very large, particularly when it
is unnecessary to recreate the entire original set of processes to isolate an error. By using an event log
together with Instant Replay, we can reexecute the subset of processes in which we are interested and
simulate the rest.

There is a tradeoff between the expense of maintaining an event log during normal execution and the
expense of reexecuting all processes during replay. The event log approach and Instant Replay represent
two extremes, wherein the expense is shifted from the monitoring phase to the replay phase. However, a
compromise between our technique and the event log approach is possible. When frequent replay of a
subset of processes in a computation is desired, as would be the case when using cyclic debugging to isolate

errors, it is possible to collect additional information in an event log during replay that would eliminate the

need for ree.ecution of the entire program during subsequent replay. We can record in an event log all
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external inputs to the subset of processes of interest. This record would include both inputs from the

external environment and inputs from processes not under scrutiny. Interactions involving processes to be

reexecuted during replay are recorded, as before, as partial orders on history tapes. On subsequent

executions, only the designated subset of processes would be reexecuted and their interface with the

external environment, including the other processes, would be simulated using the event log. Since we

assume that the debugging methodology is cyclic, the set of processes that are simulated by an event log

will grow larger as we look at fewer processes in greater detail (L., top-down debugging). Note however

that we would continue to use Instant Replay in the monitoring phase because it has the least impact on

normal program execution and can be used to generate event logs during the debugging cycle.9

Finally, we can use Instant Replay, together with techniques developed by Miller [16,17], for both

causal analysis and performance monitoring of parallel programs. These techniques use a program histor)

graph containing a partial order of all events in a parallel program to analyze the behavior of the program.

It is possible to change some aspects of the history graph to analyze the effect of changes in the execution

environment [17], however, there is no guarantee that modifying system parameters, such as expected

communication delay and processor load, will not change the execution behavior of the program. By using

Instant Replay to guarantee repeatable execution behavior, it is possible to change cost labels in the histor\

graph and replay the program under new assumptions, without changing the execution behavior of the

program. (Of course, the replay mechanism would have to be modified to incorporate changes to the

hist&y graph, such as the message delay time.) In particular, one could examine the effect of

communication costs on overall program performance by artificially varying the delay associated with

communication. Any performance results derived from such an exercise would be just estimates, but it is

still possible to learn a great deal about parallel programs using these techniques.

5. Conclusions and Future Work

One of the most important tools for analyzing and debugging software is the interactive debugger.

Cyclic debugging with an interactive debugger requires the ability to reproduce program behavior on

demand. We have described the design and implementation of a system for reproducible execution of

parallel programs. In summary, Instant Replay:

* provides reproducible execution of parallel programs
* is not dependent on any particular form of interprocess communication
e makes possible global replay of programs, rather than processes
* introduces no centralized bottleneck, either during monitoring or replay
* does not require synchronized clocks or globally-consistent logical time
* allows modifications to programs during the debugging cycle
* has only minor impact on program performance during the monitoring phase
. has reasonable space requirements
e is applicable to both loosely-coupled and tightly-coupled environments

) In exuaordinary dumstances where even a single replay i impracical. 1 's history tapes and a panal eent log could
both be recorded dunng the monitoring phase

A %%4*
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There are two potential disadvantages to our approach. First, we record a version number for each
access to a shared object. If the granularity of communication is very small (eg. one byte messages), we
could use less space by simply storing data values (ie.. the event log approach). Second, we require that all
processes in a progan reexecute during replay. Even though we have shown how to use event logs to
eliminate some processes during successive replays, no iterative technique is well-uited to programs that
are impractieal to reexecute.

Nevertheless, our experience has shown that Inszant Replay is effective, efficient, and practical.

Additional experience with our technique is necessary, however. We must perform further empirical
studies to determine the performance cost of our monitoring technique on other programming
environments. Specifically, we intend to explore applications of our techniques to message-based

communication in loosely-coupled systems and lightweight tasks and shared memory in tightly-coupled
systems. Our case studies, while very different in programming style, do not address all of the
programming models we wish to support

Several optimizations to reduce further the time and space needs of our technique are also under

consideration. An example of such an optimization was described in Section 3. Other optimizations based
on similar idempotent operations are possible. Another interesting optimization is based on the observation
that some parallel programs (or segments of programs) are detem vic. The Gaussian elimination
program is a good example. The processes that perform Gaussian elimination proceed in lockstep: no
monitoring operations are necessary to reproduce behavior. It is possible to reduce contention and space
needs for monitoring if we can determine that some sequence of interprocess operations yields a
deterministic schedule. Clearly this information is application-specific and may only be obtainable with
programmer assistance. Nonetheless, this approach is worth exploring for large parallel systems w ith
deterministic components.

Finally. we intend to explore the impact of Instant Replay on the development of a general-purpose
programming environment for parallel architectures. Additional tools will be constructed as a part of an.
such environment (e.g.. source-level single-process debuggers for parallel programs, tools to monitor

execution with graphical displays, compilers to automatically instrument programs), and we will want to
integrate our program replay capability with those tools as they are developed.
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